Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid.

نویسندگان

  • H Shen
  • C Anastasio
چکیده

Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical ((•)OH) is the most reactive of the ROS species, there are few quantitative studies of (•)OH generation from PM. Here we report on (•)OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified (•)OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more (•)OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances (•)OH formation from all the samples. Fine PM (PM(2.5)) generally makes more (•)OH than the corresponding coarse PM (PM(cf), i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more (•)OH normalized by PM mass. (•)OH production by SJV PM is reduced on average by (97±6)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of (•)OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for (•)OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived (•)OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary (•)OH, although high PM events could produce much higher levels of (•)OH, which might lead to cytotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Hydroxyl Radical and Hydrogen Peroxide Generation in Ambient Particle Extracts and Laboratory Metal Solutions.

Generation of reactive oxygen species (ROS) - including superoxide ((•)O(2) (-)), hydrogen peroxide (HOOH), and hydroxyl radical ((•)OH) - has been suggested as one mechanism underlying the adverse health effects caused by ambient particulate matter (PM). In this study we compare HOOH and (•)OH production from fine and coarse PM collected at an urban (Fresno) and rural (Westside) site in the Sa...

متن کامل

Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid

Epidemiological and toxicological studies have shown a relation between the inhalation of atmospheric particles and adverse cardiopulmonary health effects. The generation of reactive oxygen species (ROS) by particles is one current hypothesis for their toxic effects. Thus a quantitative measurement of ROS is important since that will be an index to assess the oxidative stress that particles may...

متن کامل

Impacts of Antioxidants on Hydroxyl Radical Production from Individual and Mixed Transition Metals in a Surrogate Lung Fluid.

Inhalation of ambient particulate matter causes morbidity and mortality in humans. One hypothesized mechanism of toxicity is the particle-induced formation of reactive oxygen species (ROS) - including the highly damaging hydroxyl radical ((·)OH) - followed by inflammation and a variety of diseases. While past studies have found correlations between ROS formation and a variety of metals, there a...

متن کامل

In vitro antioxidant effects of barberry fruit extracts

A vast majority of the studies addressing the free radicals including hydroxyl radical is a damage compound of biochemical molecules such as DNA, proteins and lipids. When free radicals specially hydroxyl radical are not adequately removed from the body, it may damage biological macromolecules, leading to a variety of disease occurs. Therefore, the body should be protected by an enzymatic or no...

متن کامل

Generation of Hydroxyl Radicals from Dissolved Transition Metals in Surrogate Lung Fluid Solutions.

Epidemiological research has linked exposure to atmospheric particulate matter (PM) to several adverse health effects, including cardiovascular and pulmonary morbidity and mortality. Despite these links, the mechanisms by which PM causes adverse health effects are poorly understood. The generation of hydroxyl radical (.OH) and other reactive oxygen species (ROS) through transition metal-mediate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Atmospheric chemistry and physics

دوره 11 18  شماره 

صفحات  -

تاریخ انتشار 2011